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Abstract

We demonstrate a two phase classifica-
tion method, first of individual pixels,
then of fixed regions of pixels for scene
classification—the task of assigning posteri-
ors that characterize an entire image. This
can be realized with a probabilistic graphical
model (PGM), without the characteristic seg-
mentation and aggregation tasks characteris-
tic of visual object recognition. Instead the
spatial aspects of the reasoning task are de-
termined separately by a segmented partition
of the image that is fixed before feature ex-
traction. The partition generates histograms
of pixel classifications treated as virtual evi-
dence to the PGM. We implement a sampling
method to learn the PGM using virtual ev-
idence. Tests on a provisional dataset show
good (+70%) classification accuracy among
most all classes.

1 Introduction

Scene recognition is a field of computer understanding
for classification of scene types by analysis of a visual
image. The techniques employed for scene recognition
are well known, relying on methods for image analysis
and automated inference. The fundamental process is
to assign probabilities over a defined set of categories—
the scene characteristics—based on analysis of the cur-
rent visual state. This paper shows the practicability
of a lightweight approach that avoids much of the com-
plexity of object recognition methods, by reducing the
problem to a sequence of empirical machine learning
tasks.

The problem we have applied this to is classification
of scene type by analysis of a video stream from a
moving platform, specifically from a car. In this pa-
per we address aspects of spatial reasoning—clearly

there is also a temporal reasoning aspect, which is not
considered here. In figurative terms the problem may
be compared with Google’s Streetview R© application.
Streetview’s purpose is to tell you what your surround-
ings look like by knowing your location. The scene
recognition problem is the opposite: to characterize
your location from what your surroundings look like.

In this paper we consider a classification scheme for
images where the image is subject to classification in
multiple categories. We will consider outdoor roadway
scenes, and these classification categories:

1. surroundings, zoning, development (urban, resi-
dential, commercial, mountainous, etc.)

2. visibility (e.g., illumination and weather),

3. roadway type,

4. traffic and other transient conditions,

5. roadway driving obstacles.

An image will be assigned one label from each of the
set of five categories.

1.1 Uses of Scene Classification

There are numerous uses where the automated classi-
fication assigned to a scene can help. The purpose of
scene classification is to capture the gist of the current
view from its assigned category labels. For example,
how would you describe a place from what you see?
Certainly this is different from what you would know
from just the knowledge of your lat-long coordinates.
These are some envisioned uses:

• A scene classification provides context. For ex-
ample in making a recommendation, the context
could be to consider the practicality of the re-
quest: For instance, “Do you want to get a latte
now? This is not the kind of neighborhood for
that.”



• Supplement search by the local surroundings. For
example, “Find me a winery in a built-up area.”
“Find me a restaurant in a remote place.” “Find
a park in a less-travelled residential area.”

• Coming up with a score for the current conditions.
How is the view from this place? How shaded or
sunny is the area? What fraction of the surround-
ings are natural versus artificial? Taking this one
step further, given an individual driver’s ratings of
preferred locations, suggest other desirable routes
to take, possibly out of the way from a “best”
route.

• Distributed systems could crowd-source their
findings about nearby locations to form a com-
prehensive picture of an area. For example, “How
far does this swarm (road-race, parade) extend?”

1.2 Relevant previous work

One of the earliest formulations of image understand-
ing as a PGM is found in Levitt, Agosta, and Binford
(1989) and Agosta (1990). The approach assumed
an inference hierarchy from object categories to low-
level image features, and proposed aggregation opera-
tors that melded top-down (predictive) with bottom-
up (diagnostic) reasoning over the hierarchy.

The uses of PGMs in computer vision have expanded
into a vast range of applications. Just to mention a
couple of examples, L. Fei-Fei, Fergus and P. Perona
(2003) developed a Bayesian model for learning new
object categories using a “constellation” model with
terms for different object parts. In a paper that im-
proved upon this, L. Fei-Fei and P. Perona (2005)
proposed a Bayesian hierarchical theme model that
automatically recognizes natural scene categories such
as forest, mountains, highway, etc. based on a gen-
eralization of the original texton model by T. Leung
and J. Malik (2001) and, L. Fei-Fei R. VanRullen, C.
Koch, and P. Perona (2002). In another application
of a Bayesian model, Sidenbladh, Black, and Fleet
(2000) develop a generative model for the appearance
of human figures. Both of these examples apply model
selection methods to what are implicitly PGMs, if not
explicitly labeled as such.

Computer vision approaches specifically to scene
recognition recognize the need to analyze the image as
a whole. Hoiem, Efros, and Hebert (2008) approach
the problem by combining results from a set of in-
trinsic images, each a map of the entire image for one
aspect of the scene. Oliva and Torralba (2006) develop
a set of scene-centered global image features that cap-
ture the spatial layout properties of the image. Sim-
ilar to our approach, their method does not require
segmentation or grouping steps.

1.3 How Scene Classification differs from
Object Recognition

Scene classification implies a holistic image-level in-
ference task as opposed to the task of recovering the
identity, presence, and pose of objects within an im-
age. Central to object recognition is to distinguish
the object from background of the rest of the image.
Typically this is done by segmenting the image into re-
gions of smoothly varying values separated by abrupt
boundaries, using a bottoms-up process. Pixels may
be grouped into “super-pixels” whose grouping is fur-
ther refined into regions that are distinguished as part
of the foreground or background. Object recognition
then considers the features and relationships among
foreground regions to associate them with parts to be
assembled into the object, or directly with an entire
object to be recovered.

Scene classification as we approach it does not neces-
sarily depend on segmenting the image into regions,
or identifying parts of the image. Rather it achieves
a computational economy by treating the image as a
whole; for example, to assign the image to the class
of “indoor,” “outdoor,” “urban landscape,” or “rural
landscape,” etc. from a set of pre-defined categories.
We view classification as assigning a posterior to class
labels, where the image may be assigned a value over
multiple sets of labels; equivalently, the posterior may
be a joint distribution over several scene variables.

Despite the lack of a bottoms-up segmentation step in
our approach, our method distinguishes regions of the
image by a partition that is prior to analyzing the im-
age contents. This could be a fixed partition, which
is appropriate for a camera in a fixed location such as
a security camera, or it could depend on inferring the
geometry of the location from sources distinct from
the image contents, such as indicators of altitude and
azimuth of the camera. In our case, the prior pre-
sumption is that the camera is on the vehicle, facing
forward, looking at a road.

The rest of this paper is organized as follows. Section 2
describes the inference procedure cascade; the specific
design and learning of the Bayes network PGM is the
subject of Section 3, and the results of the learned
model applied to classification of a set of images is
presented in Section 4.

2 Lightweight inference with virtual
evidence

In treating the image as a whole, our approach to infer-
ence for scene classification takes place by a sequence
of two classification steps:
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• First the image’s individual pixels are classified,
based on pixel level features. This classifier re-
solves the pixel into one of n discrete types, rep-
resenting the kind of surface that generated it.
In our examples n = 8: sky, foliage, building-
structure, road-surface, lane, barrier-sidewalk, ve-
hicle, and pedestrian.

• In the second step, the pre-defined partitions are
applied to the image and in each partition the
pixel types are histogrammed, to generate a like-
lihood vector for the partition. These likelihoods
are interpreted as virtual evidence1 for the second
level image classifier, the scene classifier, imple-
mented as a PGM. The classifier returns an joint
distribution over the scene variables, inferred from
the partitions’ virtual evidence.

There is labeled data for both steps, to be able to learn
a supervised classifier for each. Each training image is
marked up into labeled regions using the open source
LabelMe tool, (Russell, Torralba, K. Murphy and Free-
man, 2007) and also labeled by one label from each
category of scene characteristics. From the region la-
belings a dataset of pixels, with color and texture as
features, and the region they belong to as labels can
be created. In the second step we learn the structure
and parameters of a Bayes network—a discrete valued
PGM—from the set of training images that have been
manually labeled with scene characteristics. Each im-
age has one label assigned for each scene characteristic.
The training images are reduced to a set of histograms
of the predicted labels for the pixels, one for each par-
tition. The supervised data for an image consists of
the histogram distributions and the label set.

Scene recognition output is a summarization of a visual
input as an admittedly modest amount of information
from a input source orders of magnitude greater–even
mores than for the object recognition task. From the
order of 106 pixel values we infer a probability distri-
bution over a small number of discrete scene classifi-
cation variables. To obtain computational efficiency,
we’ve devised an approach that summarizes the infor-
mation content of the image in an early stage of the
process that is adequate at later stages for the classi-
fication task.

2.1 Inference Cascade

The two phases in the inference cascade can be for-
malized as follows, starting from the pixel image and

1Sometimes called “soft evidence.” We prefer the term
virtual evidence, since soft evidence is also used to mean an
application of Jeffrey’s rule of conditioning that can change
the CPTs in the network.

resulting in a probability distribution over scene char-
acteristics. Consider an image of pixels pij over i× j,
each pixel described by a vector of features fij . The
features are derived by a set of filters, e.g. for color
and texture, centered at coordinate (i, j). A pixel-level
classifier is a function from the domain of f to one of
a discrete set of n types, C : f → {c(1), · · · c(n)}. The
result is an array of classified image pixels.

A pre-determined segmentation, Gm partitions the
pixels in the image into M regions by assign-
ing each pixel to one region, rm = {pij | pij ∈
Gm},m = 1 . . .M , to form regions that are con-
tiguous sets of pixels. Each region is described
by a histogram of the pixel types it contains:
Hm =

(
|C(fij) = c(1)|, · · · |C(fij) = c(n)|

)
s.t. fij ∈

Gm, for which we introduce the notation, Hm =(
|c(1)ij |m, · · · |c

(n)
ij |m

)
, where |c(i)|m denotes the count

of pixels of type c(i) in region m. The scene classi-
fier is a PGM with virtual evidence nodes correspond-
ing to the M regions of the image. See Figure 3.
Each evidence node receives virtual evidence in the
form of a lambda message, λm, with likelihoods in the
ratios given by Hm. The PGM model has a subset
of nodes S = {S1, · · ·Sv}, distinct from its evidence
nodes, for scene characteristic variables, each with a
discrete state space. Scene classification is completely
described by P(S |λ1, · · ·λM ), the joint of S when the
λm are applied, or by a characterization of the joint
by the MAP configuration over S, or just the posterior
marginals of S.

2.2 Partitions of Pixel-level Data

As mentioned we avoid segmenting the image based
on pixel values by using a fixed partition to group
classified pixels. We introduce a significant simplifi-
cation over conventional object recognition methods
by using such a segmentation. This makes sense be-
cause we are not interested in identifying things that
are in the image, but only in treating the image as a
whole. For instance in the example we present here,
the assumption is that the system is classifying an out-
door roadway scene, with sky above, road below, and
surroundings characteristic of the scene to either side.
The partitions approximate this division. The image is
partitioned symmetrically into a set of twelve wedges,
formed by rays emanating from the image center.

For greater efficiency the same method could be ap-
plied over a smoothed, or down-sampled image, so that
every pixel need not be touched, only pixels on a reg-
ular grid. The result of the classification step is a dis-
crete class-valued image array. See Figure 2. Despite
the classifier ignoring local dependencies, neighboring
pixels tend to be classed similarly, and the class-valued
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image resembles a cartoon version of the original.

Figure 1: The original image. The barriers bordering
the lane are a crucial feature that the system is trained
to recognize.

Figure 2: The image array of C(fij), the pixel classi-
fier, on an image down-sampled to 96 by 54. Rays em-
anating from the image center show the wedge-shaped
regions. Colors are suggestive of the pixel class, e.g.
green indicates foliage and beige indicates barriers.

2.2.1 Inferring partition geometry

The point chosen as the image center, where the ver-
tices of the wedges converge approximates the vanish-
ing point of the image. Objects in the roadway scene
tend to conform (very) roughly to the wedge outlines
so that their contents are more uniform, and hence,
likelihoods are more informative. For example, the
contents of the image along the horizon will fall within
one wedge, and the road surface within another.

2.3 The image as a source of virtual evidence

For each wedge that partitions the image, the evidence
applied to the Bayes network from the wedge m is:

λm ∝ |c(1)ij |m : |c(2)ij |m : · · · : |c(n)ij |m. One typically
thinks of virtual evidence as a consequence of mea-
surements coming from a sensor that garbles the pre-

cise value of the quantity of interest—where the actual
observed evidence value is obscured by an inaccuracy
in the sensor reading. Semantically, one should not
think of the virtual image evidence as a garbled sensor
variable. Rather it is the evidence that describes the
region.

3 Bayes network design

Formally a Bayes network is a factorization of a joint
probability distribution into local probability mod-
els, each corresponding to one node in the network,
with directed arcs between the nodes showing the
conditioning of one node’s probability model on an-
other’s (Koller and Friedman, 2010). Inference—
for example, classification—operates in the direction
against the causal direction of the arc. In short, in-
ference flows from lower level evidence in the network
upward to the class nodes at the top of the network
where it generates the posterior distributions over the
class variables, in this case, the scene characteristics.
We learn a fully observable Bayes network with virtual
evidence for scene classification.

3.1 How the structure and parameters are
defined

The design of the Bayes network model is fluid: It is
easily re-learned under different partition inputs, out-
put categories and structural constraints. The ability
to easily modify the model to test different kinds of
evidence as inputs, or differently defined nodes as out-
puts is an advantage of this approach. The structure
of the model discovers dependencies among the model
variables that reveal properties of the domain.

Learning the Bayes network is composed of two as-
pects; the first, learning the variables’ structure, the
second, learning the parameters of the variable con-
ditional probability tables. The algorithm used is
SMILE’s Bayesian Search (Druzdzel et al., 1997), a
conventional fully observable learning algorithm, with
a Bayesian scoring rule used to select the preferred
model. Learning structure and parameters occur si-
multaneously.

The model is structured into two levels, the top level of
outputs and the lower level of inputs as shown in Fig-
ure 3. This is the canonical structure for classification
with a Bayes network, in this case a multi-classifier
with multiple output nodes. In the learning procedure
this node ordering is imposed as a constraint on the
structure, so that conditioning arcs cannot go from the
lower level to the upper level.

Further constraints are used to limit in-degree and
node ordering. The in-degree of evidence nodes is
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limited to two. Node ordering of output nodes fol-
lows common sense causal reasoning: for instance, the
“Surroundings” variable influences the “Driving Con-
ditions” and not the other way around. The model
consequently follows an approximately näive Bayes
structure for each scene variable, but with additional
arcs that are a consequence of the model selection per-
formed during learning. The resulting network is rela-
tively sparse and hence learning a network of this size,
let alone running inference on it can be done interac-
tively.

3.2 Bayes Network Learning Dataset

An interesting challenge in learning this model is that
there is no conventional procedure for learning from
virtual evidence, such as the histogram data.

3.2.1 Consideration of partition contents as
virtual evidence

We considered three ways to approximate learning the
Bayes network from samples that include virtual evi-
dence.

1) Convert the dataset into an approximate equiva-
lent observed evidence dataset by generating multi-
ples of each evidence row, in proportion to the likeli-
hood fraction for each state of the virtual evidence. If
there are multiple virtual evidence nodes, then to cap-
ture dependencies among virtual evidence nodes this
could result in a combinatorial explosion of row sets,
one multiple for each combination of virtual evidence
node states, with multiplicities in proportion to the
likelihood of the state combination. This is equivalent
in complexity to combining all virtual evidence nodes
into one node for sampling.

Similarly one could sample from the combination of all
virtual evidence nodes and generate a sample of rows
based on the items in the sample. This is a bit like
logic sampling the virtual states.

Both these methods make multiple copies of a row in
the learning set as a way to emulate a training weight.
Instead one could apply a weight to each row in the
sampled training set, in proportion to its likelihood.

2) One could also consider a mixture, a “multi-net,”
of learned deterministic evidence models. The mod-
els would have the same structure, so the result would
be a mixture of CPTs, weighted (in some way) by the
likelihoods. It appears this would also suffer a combi-
natorial explosion of mixture components, and might
be amenable to reducing the set by sampling.

3) Alternatively, one could consider the virtual evi-
dence by a virtual node that gets added as a child

to the evidence node, which is then instantiated to
send the equivalent lambda msg to its parent. This is
the method used in Refaat, Choi and Darwiche (2012).
With many cases, there would be a set of virtual nodes
added to the network for each case, again generating
a possibly unmanageable method. Perhaps there is an
incremental learning method that would apply: Build
a network with one set of nodes, do one learning step,
then replace the nodes with the next set, and repeat a
learning step.

4 Results on a sample dataset

In this section we present the evaluation of the Bayes
network as a classifier. We argue that the first-stage
pixel-level classifier, whose accuracy approaches 90%,
is a minor factor in the scene classification results,
since the partition-level inputs to the Bayes network
average over a large number of pixels, although this
premise could be tested.

4.1 Learning from a sampled dataset

The sample dataset to learn the model was a further
approximation on alternative 1), where each virtual
evidence node was sampled independently to convert
the problem into an equivalent one with sampled data.
Each histogram was sampled according to its likeli-
hood distribution, to generate a set of conventional
evidence samples that approximated the histogram.
The result was an expanded dataset that multiplied
the number rows by the sample size for each row in
the histogram dataset. The resulting dataset descrip-
tion is:

1. Original data set: 122 rows of 12 region his-
tograms of images labeled by 5 scene labels.

2. Each region histogram is sampled 10 times, to
generate 1220 rows

3. Final data set of 5 labels and 12 features by 1220
rows

4.2 Inference Results

As mentioned, the second-stage Bayes network classi-
fier infers a joint probability distribution over the set
of scene characteristic nodes—the nodes shown in or-
ange in Figure 3. We will evaluate the scene classifier
by the accuracy of the predicted marginals, comparing
the highest posterior prediction for each scene variable
with the true value.2

2The “dynamic environment” variable is not counted
in the evaluation results, since most all labeled data was
collected under overcast conditions, making the predicted
results almost always correct, and uninteresting.
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Figure 3: The entire Bayes network used for scene classification. Input nodes, corresponding to the wedges
that partition the image are shown in light blue, and output nodes for the scene variables are in orange. The
input nodes are arranged roughly in the positions of the corresponding wedges in the image. The input node
histograms show the virtual evidence applied from that wedge. The labels used here for virtual evidence states,
s 1, . . . s 8 correspond to the classifier outputs c(1), . . . c(8).

The matrix of counts of the true class by the predicted
class is called a confusion matrix. The row sum of the
confusion matrix for any class divided into the diag-
onal (true count) is the fraction of correct cases out
of those possible, known as the recall or the coverage
for that class. The column sum divided into the diago-
nal element is the fraction classified with that columns
class label that truly belong to that class, which is
called the precision. Tables 1− 4 show the recall and
precision for each class, for each of the scene variables.
As may be expected “Surroundings” that takes in the
entire image performs better than “Road obstacles”
that requires attention to detail in just the car’s lane.
This poor performance is even more true with “Bicy-
cles and pedestrians,” in Table 3 that appear in small
areas of the image. In other classes either precision or
recall approach 1.0, except for “Local” roads, where all
cases were confused with “Curves and grades,” again
due to the limited variety in the training set.

Beyond evaluating the accuracy of marginal predic-

tions, we can also make observations about the struc-
ture learned for the Bayes network. Arcs in the learned
model show which wedge histograms are relevant to
which scene variables. These arcs are relatively sparse,
in part due to the afore-mentioned design constraint
in-degree arc limit of two. The arcs chosen by the
structure learning algorithm show a strong association
between the location of the partitions, and different
scene variables. We see this in the associations where
the “Driving conditions” scene variable connects to
partitions at the base of the image, and “Surround-
ings” connects to partitions on the image periphery.
The relevance of the two wedges at the bottom of the
diagram is limited, since their only incoming arcs are
from other wedges, indicating that their evidence is
supported entirely by neighboring wedges. We leave
them in the model, since in the case of virtual evidence
they will still have some information value for classi-
fication. Further along these lines, in terms of wedge
dependencies, only one arc was learned between wedge
histograms, indicating that the evidence contributed
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to the scene is conditionally independent in all but
this case. The sub-network of scene variables is more
connected, indicating strong dependencies among the
scene variables. Some of these are to be expected, for
instance “Curves and grades” correlates strongly with
“Mountainous” surroundings. Some are spurious, as
a result of biased selection of the training sample im-
ages, (e.g. all divided highway images corresponded
to overcast scenes) and have been corrected by adding
more samples.

4.3 Discussion and Conclusion

We have demonstrated a novel scene classification al-
gorithm that takes advantage of the presumed geom-
etry of the scene to avoid computationally expensive
image processing steps characteristic of object recogni-
tion methods, such as pixel segmentation, by a cascade
of a pixel level and fixed partition level multi-classifier,
for which we learn a Bayes network. As a consequence
of the partition-level data we learn the Bayes network
with virtual evidence.

The Bayes network classifies the scene in several de-
pendent dimensions corresponding to a set of cate-
gories over which a joint posterior of scene character-
istics is generated. Here we have only considered the
marginals over categories, however it is a valid ques-
tion whether a MAP interpretation—of the most likely
combination of labels—is more appropriate.

The use of virtual evidence also raises questions about
whether it is proper to consider the virtual evidence
likelihood as a convex combination of “pure” image
data. Another interpretation is that the histograms
we are using are better“sliced and diced” to generate
strong evidence from certain ratios of partition con-
tent. For instance a partition that includes a small
fraction of evidence of roadway obstacles—think evi-
dence of a small person—may be a larger concern than
a partition obviously full of obstacles, and should not
be considered a weaker version of the extreme parti-
tion contents. These subtleties could be considered
as we expand the applicability of the system. In this
early work it suffices that given the approximations,
useful and accurate results can be achieved at modest
computational cost.
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Mountainous
Open
rural

Residential Urban

Recall 1.0 0.9 0.794 0.45
Precision 0.642 1.0 0.964 1.0
Accuracy 0.784

Table 1: Surroundings

Curves
and

grades

Limited
access

highway
Local

No
shoulder

Streetside
parking

Recall 1.0 0.75 0.0 0.85 0.56
Precision 0.61 1.0 NaN 1.0 1.0
Accuracy 0.770

Table 2: Roadways

Bicycles and
pedestrians

Traffic and
congestion

Unimpeded

Recall 0.56 0.6 0.98
Precision 0.875 0.93 0.67
Accuracy 0.754

Table 3: Driving Conditions

Clear road Construction
Merge

intersection

Tree
trunks

and poles

Recall 0.42 0.96 0.6 1.0
Precision 1.0 0.92 0.86 0.55
Accuracy 0.738

Table 4: Road Obstacles
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