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We show the soundness of automated con­
trol of machine vision systems based on in­
cremental creation and evaluation of a par­
ticular family of influence diagrams that rep­
resent hypotheses of imagery interpretation 
and possible subsequent processing decisions. 
In our approach, model-based machine vi­
sion techniques are integrated with hierarchi­
cal Bayesian inference to provide a framework 
for representing and matching instances of ob­
jects and relationships in imagery, and for ac­
cruing probabilities to rank order con:liicting 
scene interpretations. We extend a result of 
Tatman and Shachter to show that the se­
quence of processing decisions derived from 
evaluating the diagrams at each stage is the 
same as the sequence that would have been 
derived by evaluating the final influence dia­
gram that contains all random variables cre­
ated during the run of the vision system. 

I. Introduction 

Levitt and Binford [Levitt et al.-88], [Bin­
ford et al.-87], presented an approach to per­
forming automated visual interpretation from 
imagery. The objective is to infer the content 
and structure of visual scenes of physical ob­
jects and their relationships. Inference for ma­
chine vision is an errorful process because the 
evidence provided in an image does not map in 
a one to one fashion into the space of possible 
object models. Evidence in support or denial 
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of a given object is always partial and some­
times incorrect due to obscuration, occlusion, 
noise and/or compounding of errorful interpre­
tation algorithms. On the other hand, there is 
typically an abundance of evidence [Lowe-86]. 

In our approach, three dimensional model­
based machine vision techniques are integrated 
with hierarchical Bayesian inference to provide 
a framework for representing and matching in­
stances of objects and relationships in imagery, 
and for accruing probabilities to rank order 
conflicting scene interpretations. In particu­
lar, the system design approach uses proba­
bilistic inference as a fundamental, integrated 
methodology in a system for reasoning with 
geometry, material and sensor modeling. 

Our objective is to be capable of interpret­
ing observed objects using a very large visual 
memory of object models. N evatia [N evatia-
74] demonstrated efficient hypothesis gener­
ation, selecting subclasses of similar objects 
from a structured visual memory by shape in­
dexing using coarse, stick-figure, structural de­
scriptions. Ettinger [Etiinger-88] has demon­
strated the reduction in processing complexity 
available from hierarchical model-based search 
and matching. In hierarchical vision system 
representation, objects are recursively broken 
up into sub-parts. The geometric and func­
tional relations between sub-parts in turn de­
fine objects that they comprise. Taken to­
gether, the models form an interlocking net­
work of orthogonal part-of and is-a hierarchies. 

Besides their shape, geometrical decomposi­
tion, material and surface markings, in our ap­
proach, object modds hold knowledge about 
the image processing and aggregation opera­
tions that ean be used to gather evidence sup­
porting or denying their existence in imagery. 
Thus, relations or constraints between object 
sub-parts, such as the angle at which two ge­
ometric primitives meet in forming a joint in 
a plumbing fixture, are modeled explicitly as 

procedures that are attached to the node in the 
model to represent the relation. Thus model 
nodes index into executable actions represent­
ing image evidence gathering operations, im-



age feature aggregation procedures, and 3D 
volume from 2D surface inference. 

In Binford and Levitt's previous work, the 
model structuring was guided by the desire to 
achieve the conditional independence between 
multiple children (i.e., sub-parts) of the same 
parent (super-part, or mechanical joint). This 
structuring allowed Pearl's parallel probabil­
ity propagation algorithm [Pearl-86] to be ap­
plied. Similarly, the concept of value of in­
formation wB.S applied to hierarchical object 
models to enable a partially parallelized al­
gorithm for decision-theoretic system control. 
That is, the Bayes net was incrementally built 
by searching the model space to match evi­
dence extracted from imagery. At each cy­
cle, the model space dictated what evidence 
gathering or net-instantiating actions could be 
taken, and a decision theoretic model was used 
to choose the best set of actions to execute. 

However, the requirement to force condi­
tional independence may lead to poor approxi­
mations to reality in object modeling, [Agosta-
88] . Further, the authors did not prove the co­

herence or optimality of the decision making 
process that guided system control. 

In this paper we make first steps toward for­
malizing the approach developed by Binford 
and Levitt. We set up the problem in an influ­
ence diagram framework in order to use their 
underlying theory in the formalization. Im­
age processing evidence, feature aggregation 
operations used to generate hypotheses about 
imagery interpretation, and the hypotheses 
themselves are represented in the in:ftuence di­
agram formalism. We want to capture the pro­
cesses of searching a model database to choose 
system processing actions that aggregate (i.e., 
generate higher level object hypotheses from 
lower level ones), search (i.e., predict and look 
elsewhere in an image for object parts based 
on what has already been observed) and re­
fine (i.e., gather more evidence in support or 
denial of instantiated hypotheses). 

The behavior of machine vision system pro­
cessing is represented as dynamic, incrernen-
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tal creation of influence diagrams. Matches 
of image evidence and inferences against ob­
ject models are used to direct the creation of 
new random variables representing hypotheses 
of additional details of imagery interpretation. 
Dynamic instantiation of hypotheses are for­
mally realized as a sequence of influence dia­
grams, each of whose random variables and in­
fluence :relations is a superset of the previous. 
The optimal system control can be viewed as 

the optimal policy for decision making based 
on the diagram that is the 14limit" of the se­
quence. 

We extend a result of Tatman and Shachter 
[Tatrnan-86J, [Tatman and Shachter-89) to 
show that the sequence of processing decisions 
derived from evaluating the diagrams at each 
stage is the same B.S the sequence that would 
have been derived by evaluating the final in­
fluence diagram that contains all random vari­
ables created during the run of the vision sys­
tem. 

In the following we first review our approach 
to inference, section 2, and control, section 
3, in computer vision. In section 4 we rep­
resent results of the basic image understand­
ing strategies of aggregation, search and re­
finement in influence diagram formalisms. In 
section 5 we sketch a proof of the soundness 
of control of a vision system by incremental 
creation and evaluation of influence diagrams. 

ll. Model-Based Reasoning for Machine 
Vision 

We take the point of view that machine vi­
sion is the process of predicting and accumu­
lating evidence in support or denial of run­
time generated hypotheses of instances of a 
priori models of physical objects and their pho­
tometric, geometric, and functional relation­
ships. Therefore, in our approach, any ma­
chine vision system architecture must include 
a database of models of objects and relation­
ships, methods for acquiring evidence of in­
stances of models occuring in the world, and 
techniques for matching that evidence against 
the models to arrive at interpretations of the 



imaged world. Basic image evidence for ob­
jects and relationships includes structures ex­
trac�ed from images such as edges, vertices 
and regions. In non-ranging imagery, these are 
one or two dimensional structures. Physical 
objects, on the other hand, a.re three dimen­
sional. The inference process from image evi­
dence to 3D interpretation of an imaged scene 
tends to break up into a natural hierarchy of 
representation and processing, [Binford-SO). 

Processing in a machine vision system has 
two basic components: image processing to 
transform the image data to other represen­
tations that are believed to have significance 
for interpretation; and aggregation operations 
over the processed data to generate the rela­
tions that are the basis for interpretation. For 
example, we might run an edge operator on 
an image to transform the data into a. form 
where imaged object boundaries are likely to 
have high values, while in�erior surfaces of ob­
jects are likely to have low values. We then 
threshold and run an edge linking operator 
on this edge image (another image processing 
operator) to produce a representation where 
connected sets of pixels are likely to be object 
boundaries. Now we search for pairs of edges 
that are roughly parallel and an appropriate 
distance apart as candidates for the opposite 
sides of the projected image of an object we 
have modeled. This search "'aggregates" the 
boundaries into pairs that may have signifi­
cance for object recognition. 

Aggregation and segmentation operations 
are fundamental in data reduction. We show 
how the concept of aggregation in bottom 
up reasoning can be the basis for generat­
ing hypotheses of object existence and type. 
Aggregation applies constraints from our un­
derstanding of geometry and image forma­
tion. The aggregation operaiors also corr� 
spond to the transformations between levels in 
the object recognition hierarchies; Sub-parts 
are grouped together at one level by relation­
ships that correspond to a single node at 1.he 
next higher level. Therefore grouping opera­
tors dictate the "out-degree" of a hypothesis 
at one hierarchy level with its children at the 
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level below. 

Control of a machine vision system consists 
of selecting and executing image processing 
and grouping operations, searching the object 
model network to match groups to models, in­
stantiating hypotheses of possible observed ob­
jects or object parts, accruing the evidence to 
infer image interpretations, and deciding when 
interpretation is sufficient or complete. 

m. Sequential Control for Machine Vi­

sion Inference 

Presented with an image, the first task for 
a machine vision system is to run some ba­
sic image processing and aggregation opera­
tors to obtain evidence that can be used to 
find local areas of the image where objects may 
be present. This initial figure-from-ground 
reasoning can be viewed as bottom-up model 
matehing to models that are at the coarsest 
level of the is-a hierarchy, i.e., the 14objectfnot­
object" level. Having initialized the process­
ing on this image, basic hypotheses, such as 

"surface/not-surface" can be instantiated by 
matching surface models. 

After initialization, a method of sequential 
control for machine vision is as follows: 

0. Check to see if we are done. If not, con­
tinue. 

1. Create a list of all executable evidence 
gathering and aggregation actions by 
concatenating the actions listed in each 
model node that eorrespond to an instan­
tiated hypothesis. 

2. Select an action to execute. 

3. Action execution results in either new hy­
potheses being instantiated, or more ev­
idence being attached to an existing hy­
pothesis. 

4. Propagate evidence to accomplish infer­
ence for ima.ge interpretation, and go to 

(0). 



From our model-based point of view, an ac­
tion associated with a model node that corre­
sponds to an instantiated hypothesis has one 
of the following effects: refining, searching or 
aggregation. In the following we explain these 
actions. In the next section, we show a method 
of representing the effects of these actions in 
an influence diagram forma.lism. 

Refining a. hypothesis is either gathering 
more evidence in direct support of it by search­
ing for sub-parts or relationships on the part­
of hierarchy below the model corresponding to 
the hypothesis, or instantiating multiple com­
peting hypotheses at a finer level of the is-a. hi­
erarchy that are refined interpretations of the 
hypothesized object. For example, given a hy­
pothesized screwdriver handle, in refinement 
we might look for grooves in the hypothesized 
screwdriver handle. 

Searching from a hypothesis is both predict­
ing the location of other object parts or rela­
tionships on the same hierarchy level, and ex­
ecuting procedures to gather evidence in sup­
port or denial of their existence. In searching 
for the screwdriver handle, we might look for 
the blade of the screwdriver, predicting it to be 
affixed to one end or othe other of the handle. 

Aggregation corresponds to moving up the 
part-of hierarchy to instantiate hypotheses 
that include the current hypothesis as a sub­
part or sub-relationship. Having hypothesized 
the screwdriver handle and the screw-driver 
blade, we can aggregate sub-parts to hypoth­
esize the existence of the whole screwdriver. 

In summary, as we spawn hypotheses dy­
namically at runtime, hypothesis instantiation 
is guided by a priori models of objects, the ev­
idence of their components, and their relation­
ships. System control alternates between ex­
amination of instantiated hypotheses, compar­
ing them against models, and choosing what 
actions to take to grow the instantiated hy­
pothesis space, which is equivalent to seeing 
more structure in the world. The possible ac­
tions are also stored in the model space either 
explicitly as lists of functions that gather ev-
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idence (e.g., infer-specularity, find-edges, etc.) 

or that aggregate object components or other 
evidence nodes. Thus, inference proceeds by 
choosing actions from the model space that 
create new hypotheses and relationships be­
tween them. It follows that all possible chains 
of inference that the system can perform are 
implicitly specified a priori in the model-base. 

This feature clearly distinguishes inference 
from control. Control chooses actions and al­
locates them over available processors, and re­
turns results to the inference process. Infer­
ence uses the existing hypothesis space, the 
current results of actions (i.e., collected evi­
dence) generates hypotheses and relationships, 
propagates probabilities, and accumulates the 
selectable actions for examination by control. 
In this approach, it is impossible for the sys­
tem to reason circularly, as all instantiated 
chains of inference must be supported by evi­
dence in a manner consistent with the model­
base. 

IV. Model Guided Influence Diagram 
Construction 

The influence diagram formalism with 
which we build the model-base allows three 
kinds of nodes; probability nodes, value nodes 
and decision nodes. Probability nodes are 
the same as in belief nets [Pearl-86]. Value 
nodes and decision nodes represent the value 
and decision functions from which a sequen­
tial stochastic decision procedure may be con­
structed. The diagram consists of a network 
showing the relations among the nodes. Solu­
tion techniques exist to solve for the decision 
functions, (the optimal policies) given a com­
plete diagram. Formulating the model-base 
as an influence diagram allows existing solu­
tion techniques [Shachtet-86] to be exploited 
for evaluation of the interpretation process. 

The step of generating new hypotheses dy­
namically upward, from the evidence and hy­
pothesis at the current stage, a.dds structure 
to the influence diagram. Expanding the net­
work then re-evaluating it introduces a. new 
operation that is not equivalent to any evalua-



tion step for influence diagrams. In a aggrega­
tion step, a hypothesis is created to represent 
a part composed of a set of sub-parts at the 
lower level. For example, in the domain of low 
level image constructs, such as lines and ver­
tices, aggregation by higher level parts deter­
mines a segmentation of the areas of the image 
into projected surfaces. This concept of seg­
mentation differs from "segmentation" used in 
image processing in several ways. First, a com­
mon process of aggregation is used through­
out the part-of hierarchy; there is no unique 
segmentation operator. Second, the segmen­
tation need not be complete; the aggregation 
operator may only distinguish the most salient 
features. The notion of segmentation as "par­
titioning a region into segments" no longer ap­
plies. Finally, because the refinement step al­
lows the prediction by higher level hypothe­
ses of lower level features that have not yet 
been hypothesized, the segmentation may be 
extended by interpretations from above. 

Hypothesis generation is implemented by 
aggregation operators. The combinations of 
all features at a level by all aggregation op­
erators that apply, is a eombinatorially de­
manding step. To avoid this complexity the 
adjacency of features is exploited. Features 
that are aggregated belong to objects that are 
connected in space. This does not necesS&I­
ily mean that the features appear next to each 
other in the image, rather they are near each 
other in object space. Exploiting this con­
straint limits the hypotheses generated to a 
small number of all possible sets of features. 

Aggregation operators are derived from the 
models of parts in terms of the measured pa­
rameters of their sub-parts. From a physical 
model of the part, a functional relation among 
parameters is derived that distinguishes the 
presence of the part. In general, the aggrega­
tion operator calculates a score, based on dis­
tance and "congruence" between a part's sub­
parts. Aggregation hypotheses may be sorted 
so that "coarse" sub-parts are considered be­
fore "fine," to further restrict the se� of hy­
potheses generated. As described, this score is 
a deterministic function of the parameters of 
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Figure 1: Deterministic Aggregation Process 

Hypotheais of 
Existence of 

Physical Object 

Figure 2: Hypothesis Generation from the Ag­
gregation Process 

the features to be aggregated. (See Figure 1.) 

The distribution of the aggregation function 
is conditioned by the hypothesis. It is de­
scribed by a likelihood, p{•lh}, the proba­
bility of the score, given the hypothesis. (Fig­
ure 2.) 

From the a model of the appearance of the 
object, a stochastic model of the distribution 
of the aggzegation score can be derived for the 
cases that the hypothesis does or does not ex­
ist. This likelihood distribution is the proba­
bilistic aspect of the aggregation node, that al­
lows the hypothesis probability to be inferred 
from the sub-part parameters. 

This formulation is valuable because it 
shows how the the recognition process may 
be forma.Wed as distributions within a prob­
ability net. Consider a search for projected­
surface boundaries, to identify the surfaces 
that compose them. In this ins�ance, suppose 
the projected-surface boundaries are adjacent 
parallel lines. To aggregate projected-surface 



boundaries we derive a scoring function based 
on both the parallelism and proximity of line 
boundaries. In searching for projected-surface 
boundaries, the model generation may disre­
gard most potential boundaries of lines by 
physical arguments without resort to calculat­
ing the aggregation function. Those bound­
aries for which the scoring rule succeeds spawn 
a parent node containing a surface hypothesis. 
This is how the aggregation operator partici­
pates in the aggregation process. 

A suh-part may be be a member of the sets 
of several aggregation operators. Further rules 
are then applied to determine whether hy­
potheses so formed exdude each other, are in­
dependent or are necessarily co-incident. The 
range of exclusion through co-incidence may 
be captured in the derivation of the likelihood 
distributions of a sub-part as it is conditioned 
on more than one hypothesis. 

In general, the diagrams, Figures 1 and 2 are 
solved by first substituting in the determin­
istic scoring functions, then applying Bayes 
rule. To derive a general form for the aggrega­
tion operator influence diagram, imagine the 
aggregation operator as a parent to the part 
nodes. In Pearl's solution method, the par­
ent receives a lambda message that are func­
tions of the parameters in each of the sub­
part nodes. This message contains the aggre­
gation function. Because the aggregation op­
erator expresses a relation among the parts, 
it may not be factorizable as it would be if 
the sub-part nodes were conditionally inde­
pendent, hence the dependency expressed by 
the aggregation node among the pari nodes. 

H we consider the aggregation node's clique 
to involve both the high level hypothesis and 
the suh-part nodes, then an additional set of 
arcs appear from \he hypothesis to its sub­
parts. This is clear when Bayes' rule is writ­
ten out for the posterior distribution of the 
.hypothesis: 
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Figure 3: Generic Influence Diagram Proba­
bility Nodes for Machine Vision 

The aggregation operator likelihood appears 
multiplied by a set of other factors. The addi­
tional terms like p{llh} we term "existence" 
likelihoods. They are the arcs to the sub-puts, 
l;, from the hypothesis, h. Their interpreta­
tion is, given h is observed (or is not observ­
able) does the sub-part appear? Most often 
these are certainty rdations: If there is no ob­
scuration, existence of h implies appearance 
of its composite features, and vice versa. Thus 
they may express observability relations where 
h exists but not all of its features are obsened. 

To further clarify, think of each feature 
node's state space as the range of parame­
ters that describe it, plus one point - that the 
node is not observed. The probability thai the 
node appears is the integral of all the probabil­
ity mass over the range of parameters. Thus 
each part can be envisioned as two probabilis­
tic nodes; one a dichotomy, either the part is 
known to exist or it is not; the other a distri­
bution over parameters that describe the lo­
cation and shape, dependent on the existence 
node. The aggregation function expresses a 
relation between composite sub-part param­
eters and the existence of the parent. The 
additional terms in Bayes rule suggests di-



red relations between the existence nod� of 
the parent and appearance sub-part features. 
These additional terms may be thought of as 
the membership relations in the is-part-of net­
work. The relation between the parameters 
of the sub-parts and the parent's parameters 
poses an additional inference problem, much 
along the lines of traditional statistical infer­
ence of estimating a set of model parameters 
from uncertain data. 

This method emphasizes the use of mea­

sured and inferred values to determine the ex­
istence of features; we are converting parame­
ters into existence probabilities as we move up 
the network. The method concentrates on the 
classification aspect rather than the estima­
tion and localization aspect. The hope is that 
once a set of stable, high level hypotheses are 
generated, the more difficult part of recogni­
tion has been solved, and accurate estimation 
can follow using the data classification gener­
ated by what is effectively an "interpretation 
driven" segmentation process. Estimation can 
be thought of as a "value to value" process. 
It might well be necessary to carry this out 
concurrently if accurate values are required. 
Alternately, evidence may enter the network 
directly at higher levels. Neither possibility 
presents a problem to the algorithm. 

V. Dynamic Instantiation for Sequential 
Control 

In this section, we present a way to formal­
ize the control problem for inference up the 
machine vision hierarchy. We show how con­
trol over the hierarchy can be expressed as a 
dynamic program by an influence diagram for­
mulation. At this level of generality we can 
abstract out the structure at each level and 
coalesce all hypotheses at one level of the hier­
archy into one node. These hypotheses nodes 
form a chain from the top level (the object) 
hypothesis to the lowest level. Each level has 
corresponding aggregation and, possibly, evi­
dence nodes for the aggregation process at that 
level. This high level structure lets us show 
that for purposes of control the level of the 
hierarchy can be considered as stages of a dy-
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namic programming problem. Thus each level 
has the structure shown in Figure 3. 

Each stage in the dynamic program is con­
structed from the aggregation operators at one 
level of the hierarchy. We add decision and 
sub-value nodes to the influence diagram to 
represent control in a dynamic program. In 
the following, we use e; to represent the i-th 
set of observations (i.e., evidence from image 
processing operators), 9i to represent the i-th 
ap;grega.tion score, h0 to represent hypotheses 

about physical objects, d; to represent process­
ing decisions, and v; to represent control costs. 
The V node represents the values assigned to 
the top-level hypotheses. 

The process starts at the bottom of the di­
agram with the first aggregation forming the 
first set of hypotheses from the original evi­
dence. The evidence may guide the choice of 
aggregations; which we show by the decision, 
d0, with a. knowledge arc uom e0• An example 
would be to choose an edge! linking aggrega­
tion operator as 91, where e0 are edgels found 
in an image, and h1 are hypothesized object 
boundaries. This first stage is shown in Fig­
ure 5. 

The final decision, d1, selects the object hy­
pothesis with the highest value. It will float 
to the top stage as we add more stages. The 
top level value V depends on the object hy­
potheses. Intermediate hypotheses do not eon­

tribute to the value; stage decisions only affect 
the costs of calculation, v;, which are additive, 
as the dynamic programming formulation re­
quires. It may be interesting to consider what 
are the computational gains from a value func­
tion that is separable by object hypotheses; 
such a value function is not considered here. 

Next the system makes a decision of which 
processing action to take at the superior stage. 
If we add the decision at d1 to, for example, 
match boundaries into paralle) sets with aggre­
gation operator 92 and so generate projected­
surface hypotheses, h2, we have the diagram 
shown in Figure 6. Here d2 is, as described, 
the ehoice-of-object decision. 



We can continue to iterate the diagram 
building process to add another aggregation 
stage, as shown in Figure 7. It is clear how the 
sequence of diagrams proceeds as we continue 
to generalize upward to complete the part-of 
hierarchy. If we look at the sequence of in­
fluence diagrams from initialization to object 
recognition, then we can regard the final dia­
gram as if it had been built before evaluation 
took place. The distributions within the nodes 
will differ depending on the solution to the di­
agram. It follows that if we show that the 

Figure 4: First Inference Stage Influence Dia- evaluation method is sound in terms of legal 

Figure 5: Aggregation Processing Second 
Level Influence Diagram 

influence diagram operations, then we have a 
formal framework with which to develop an 
optimal recognition scheme, and in particular 
a value based method of control. 

These results are an application of work by 
Tatman and Shachter [Tatman-85], [Tatman 
and Shachter-89] on sub-value nodes and dy­
namic programming techniques represented in 
influence diagram form. Tatman shows that 
optimal policies for diagrams such as those 
above can be obtained by influence diagram 
techniques that are equivalent to dynamic pro­
gramming methods, and like these methods in­
crease linearly in complexity with the number 
of stages. 

In particular, Tatman's in:lluence diagram 
realization of Bellman's Principle of Optimal­
ity [Bellman-57] states that in a diagram with 
stage decision variables d1, ... , tin, if there ex­
ists a set of nodes x. :::: { :z:• (1), :Z:Jt(2), ... } as­

sociated to each decision dlt, such that 

1. all nodes in x� are informational prede­
cessors of d� 

2. the value node is a sum or product of sub 
value nodes 

3. at least one element of X� is on every di­
rected path from the predecessors of x. 
to the successors of X� (with the excep­
tion of the value nodes), then 

Figure 6: Aggregation Processing Third Level the optimal policy 
Influence Diagram for the decision process,{ d1 *• .. d,.*}, will have 
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. .  

the property that policy { d� •, dH 1 •, ••• d., •} is 
optimal for the decision process defined by the 
original decision process with all nodes, except 
X.r. and its successors deleted. 

If at each level in the hierarchy we set the 
aggregation node, 9• equal to the set x., we 
have met the requirements of Tatman's Theo­
rem. 

So far our influence diagram does not al­
low the incorporation of evidenc� above the 
lowest lev�l. Decisions above d1 receive no 
evidence in addition to the deterministic ag­
gregation computation from tb� level below. 
We now consider the representation of the pro- Figure 7: Search Process Influence Diagram 
cesses of search and refinement. These opera­
tions will extend the range of actions at a deci­
sion node to incorporate evidence hypotheses 
at the same level or just above. 

Notice that aggregation is the process of 
generating a hypothesis at the next higher 
level. As such it is a process of generalization 
from sul:rparts to hypothesized super-parts. 
In comparison, search is a process of adding 
more evidence to dis-ambiguate the compet­
ing higher level hypotheses. This is typically 
done by using the object models in combina­
tion with the location of currently hypothe­
sized imaged objects to direct search and pro­
cessing elsewhere in the image. For example, 
having hypothesized a projected-surface, h2, 
we could search in the region bounded by the 
projected-surface boundaries (from 92) to run 
a region operator to infer surface-like qualities, 
or we could search near the projected-sur£a.ce 
to attempt to infer neighboring surfaces. The 
influence diagram structure is pictured below. 

Either operation involves gathering more 
imagery-based evidence. Hence we denote this 
as e3, because it corresponds to the third level 
of the processing hierarchy. Notice that there 
is no direct dependency between g3 and e3. By 
letting Tatman's X3 = {93, e3}, we still fulfill 
the requirements of Bellman 's theorem. 

We now turn to refinement. A refinement 
operation might be to run an operator over 
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Figure 8: Refined Process lnftuenc:e Diagram 

the projected-surface, h2, that compared con­
trasts across the projected-surface boundaries 
to see if they were likely to bound the same 
projected surface. Such an operator is cho­
sen after h2 is instantiated, and so is made 
at decision time d2• In this way the evidence 
collected revises a hypothesis already "aggre­
gated." This is the critical distinction between 
refinement and search. We view it as providing 
additional evidence about h2, so we call it e2; 
e2 "refines" the hypothesis h2. This process is 
pictured below. 

This diagram violates Tatman's require­
ments. In particular h2 is a predecessor of 92, 



Figure 9: Solution Steps for Refinement Pro-
cessing A-F 

· 

and e2 is a successor of g2, but there is a path 
from h2 to e:z that does not pass through g1• 
Also, e2 is not a predecessor of d2, so it can­
not be included in X(2). (Notice that e3 was 
a predecessor of d3.) 

However, by applying the same proof princi­
ples to this particular diagram structure that 
Tatman applied in his optimality proof, we can 

show that sub-value modularity is maintained, 
at the cost of complicating each stage with an 

additional arc. To see this we apply the stan­
dard influence diagram solution steps to roll 
back the diagram as shown in Figures 9 and 
10. 

As we reverse arcs aDd connect predecessors, 
the computational complexity rises from steps 
a-e, and then as nodes are absorbed, at the 
third level, the diagram simplifies almost back 
to the original, incremental two-stage (up to 
h2) diagram, except that we have an extra arc 
from g2 to the top value node. As we continue 
rolling back the diagram, reversal of arcs en­
tering e2 again raises complexity, and again 
resolves with only one additional arc from Yl 
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Figure 10: Solution Steps for Refinement Pro­
cessing G-L 

to the value node. We see that the incremental 
solution maintains the modularity of the origi· 
nal dynamic programming method so that the 
solution time is still linear in the number of 
stages. 

VI. Conclusions 

We have formalized an approach to machine 
vision in an influence diagram framework and 
shown that system processing can be repre­

sented as dynamic instantiation of image in­
terpretation hypotheses in influence diagrams. 
Hypotheses are generated by matching aggre­
gated imagery features against physical object 
models. Instantiating new hypotheses corre­
spond to introducing new nodes and random 
variables in the influence diagram. We showed 
a method of representing the affects of ba­
sic imagery interpretation actions of search, 
refinement and aggregation in influence dia­
gram formalisms. Each new action that is 
taken leads to a new influence diagram. We 
chose the next vision action by evaluating the 
current diagram. The final influence diagram 
contains all random variables dynamically in-



stantiated during control by the vision system. 
We showed that the sequence of decisions to 
act taken by the vision system is the same as 
it would have been had we derived those de­
cisions from evaluation of the final influence 
diagram. 

Our method of vision system control by in­
crementally evaluating influence diagrams as 
we build them results in a consistent, evalu­
ated, final influence diagram. Development of 
an efficient evaluation method for partial in­
stantiation of diagrams remains as future re­
search. 

There is much more work to do to complete 
the task of machine vision system representa­
tion and execution. So far we have only rep­
resented aggregation, search and refinement 
between neighboring hierarchical levels of in­
ference. However, the general vision prob­
lem alJows these operations to jump around 
between levels. This in turn raises the is­
sue of classifying machine vision operations in 
terms of their probabilistic dependencies. We 
believe we have captured some fundamental 
paradigms for computer vision, but there are 
many operators and processing paradigms in 
the literature. For example aggregation oper­
ations between inferred 3D volumes and adja­
cent 2D surfaces involves violating modularity 
assumptions used in this work. 

Another major issue is the pre-runtime com­
putation of expected values from system pro­
cessing. In [Levitt et al.-88] a scheme was 
presented for hierarchical value computation. 
This work shows that because we can cast ma­
chine vision control as a dynamic program­
ming construct, the concept of value of infor­
mation can be applied. Casting this concept 
in this framework is work in progress. 

Finally, the combinatorics of machine vision 
demand distributed processing. This requires 
multiple processing decisions to be made si­
multaneously. Here optimality computation is 
burdened with the expected interactions be­
tween processing results. It is likely that many 
more engineering solutions will be realized be-
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fore a formal analysis of this problem is com­
pleted. 
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