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1. The problem

This paperl is part of a study whose goal is to show the efficiency of using Bayes networks
to carry out model based vision calculations. [Binford et al. 1987] Recognition proceeds by drawing
up a network model from the object's geometric and functional description that predicts the
appearance of an object. Then this network is used to find the object within a photographic image.
Many existing and proposed techniques for vision recognition resemble the uncertainty calculations
of a Bayes net. In contrast, though, they lack a derivation from first principles, and tend to rely on
arbitrary parameters that we hope to avoid by a network model.

The connectedness of the network depends on what independence considerations can be
identified in the vision problem. Greater independence leads to easier calculations, at the expense
of the net's expressiveness. Once this trade-off is made and the structure of the network is
determined, it should be possible to tailor a solution technique for it.

This paper explores the use of a network with multiply connected paths, drawing on both
techniques of belief networks [Pearl 86] and influence diagrams. We then demonstrate how one
formulation of a multiply connected network can be solved.

1I. Nature of the vision problem

The objects within a visual image offer a rich variety of evidence. The image reveals objects
by their surface edges, textures, color, reflectance, and shadows. Save for extreme cases, only a part
of this evidence is necessary to recognize an object. The vision problem is no simpler because of the
surfeit of evidence: Each kind of evidence presents a new proble.n. The researcher may approach
the preponderance of clues by concentrating only ona limited variety, such as those which are
easiest to calculate, or lead to the most efficient algorithm. Bayes methods encourage the use of a
wider variety of evidence since they traditionally have been developed to integrate diverse and
subtle sources of evidence.

The problem of image recognition has close kin. By considering other varieties of evidence,
an object could be identified by those not available in a visual image, such as tactile feel or motion
when it is disturbed. Similarly there are vision problems for which recognition is not necessary,
such as visual obstacle avoidance. Recognition is one aspect of understanding the scene; the scene

1 This paper grew out of extensive discussions with Tom Binford, Dave Chelberg, Tod Levitt and
Wallace Mann. 1owe a special debt of gratitude to Tom for introducing me to both the problem
and a productive way to approach it. As usual, all errors are the sole responsibility of the author.




also may be analyzed to infer the location of the viewer relative to the object and to make other
functional statements. Conceivably the process of recognition might proceed to a higher level
recognition of some situation or “Gestalt.” These concerns are outside the scope of this paper.

Model based vision consists of two activities; first, modelling the objects to be looked for —
the predictive phase, then identifying objects by analyzing a raster image — the inferential phase.
Vision models are built from a top down decomposition of an object’s geometry into geometric
primitives that further decompose into primitive observable features. The model of the object is
decomposed into sub-assemblies that are in turn decomposed to obtain relations among volume
filling primitives, in our case “generalized cylinders” and their intervening joints. Volumes have
surfaces that appear as patches in the image. The patches are projected onto the image visual plane
as regions bounded by edges and junctions, the lowest level features in the hierarchy.

hypotheses: objects in image

Edges and patches

Vision recognition based on a model proceeds by grouping image features at a lower levels
' to identify features at higher levels.The bottom up grouping process is driven by the decomposition
model of objects expected to be within the image.

III. Issues in formulation

Grouping is a primary process of recognition, and occurs at each level of the decomposition
hierarchy. A predictive arc from a feature to a lower level feature implies both the appearance of a
lower level feature and its location relative to the feature. If a predictive arc did not entail some
position information, then the network could not perform grouping of features. Consider the
contrary case: A network constructed out of complete but non-localized evidence of the number
and kind of low level features that compose an object. This is still only weak evidence for the
appearance of the object. Unfortunately grouping adds dependencies that complicate the network
structure. Here I discuss the formulation of these dependencies.
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A. Tree structured hierarchies.

The formulation of a decomposition model implies a probability network where top level
constructs predict the appearance of lower level ones. When the observable parts at a stage can be
decomposed independently, the network becomes tree structured. The tree is rooted (at the “top”,
an unfortunately confusing use of terms) in a hypothesis about the appearance of an object. It
grows “down” to leaf nodes that represent image primitives. The process of recognition begins
when evidence from an image instantiates primitives. Then by inference from lower level nodes to
higher levels, the calculation results in the probability of the object hypothesis given the evidence.

For example, a generalized cylinder consists of a face, an axis and a sweeping function for
the face along the path of the axis. The face of the generalized cylinder appears independently of
the axis. The lower level observables of both face and axis remain independent. In contrast, the
sweeping rule and the limbs that it predicts depend on both the face and axis.

generalized
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B. Ambiguity

Optical illusions that can appear to be different objects are an example of ambiguity
functioning in the human vision system. The novelty of such images indicates their rarity. This is
evidence that the eye, in the process of bottom up grouping rarely resorts to backtracking.
Ambiguity can be formulated as the existence of a higher level construct that clarifies an ambiguity,.
more than one level below. It is expressed by influences that skip over levels. They express kinds of
arguments that stand in contrast to the grouping-at-each-level kind of reasoning we apply.
Hopefully, the intermediate constructs in the hierarchy are rich enough so that they are not
necessary.

C. Exclusion

Multiple parents in the network may be used to express exclusion, so that recognizing one
object implies the other does not exist.
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The evidentiary node for their exclusion is a sibling of both objects. Instantiating E offers
evidence for one hypothesis but not both. The distribution function of the evidence given the object
hypotheses, p(E | h,hy), resembles an exclusive-or function. We can demonstrate the strong
dependence between object nodes that this evidence generates by flipping the direction of the arc
between a hypothesis and the evidence. By Bayes rule this generates an arc between hypotheses.
Thus the truth of one hypothesis upon observing the evidence depends strongly on the truth of the
other. This characteristic multiple parent structure allows formulation by Bayes networks of
conflicting hypotheses sets as presented by Levitt [Levitt 1985]. It is useful for the purposes of
formulation to have evidentiary nodes that excludes hypotheses for different objects from evidence
the same location.

D. Co-incidence

Just as multiple parents can express exclusion, they can be used to infer two models at the
same location. Enforcing co-incident locations for different models could be a useful modeling tool.
Imagine an object that could be posed as two separate models depending on the level of detail. For
instance the “Michelin Man” could be modeled as both a human figure and as a stack of tires. As
evidence for him, the perceptor would expect to find both a man and a stack of tires in the same
location.

More common objects may also be composed as a set of co-incident models. For example a
prismatic solid may be interpreted differently as generalized cylinders, depending on the choice of
major axis. We may infer more than one of these generalized cylinders occupying the same location
from which we infer the one object that predicted the set.

Composition of the same object as several co-incident models is not to be confused with the
decomposition hierarchy. Decomposition is essentially a conditional independence argument, that
the separate features into which an object is decomposed can be recognized, given the object
appears in the view. Composition as several co-incident models, like exclusion formulations,
depends on one lower level feature being predicted by multiple higher level features. Such multiple
parent structures describe relations among their ancestors. In co-incident models, furthermore, the
multiple higher level features are resolved into the one ancestor that admits of co-incident
interpretations. This generates a network with multiple paths.

E. Global location and the use of proximity information.

In general, evidence for exclusion and co-incidence is of the kind from which the proximity
of two higher level constructs may be inferred. For instance, when an observable feature in the
image is due to the joint between two other features, then the proximity of these two may be
inferred.

Further, all parts of the hierarchy are influenced by object position, orientation and
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articulation. All variables are a function of these global variables. They form a set of variables with
universal influences, as shown here:

hypotheses

orientation
and
position

Evidence

This generates a set of arcs that violate tree type hierarchies. These dependencies allow
information about feature orientation and position to be made available to all superior nodes, once
an inference about it can be made from a lower level.

Again a question arises about the trade-off between making this influence explicit, or
entailing “softer” proximity information within the network structure. Since the geometric
modeling and resulting dependencies that complete orientation information require is demanding,
it is worth considering whether less specific proximity information could be substituted effectively.
Arguably a'person can recognize an image with distorted orientations among components, much
as the subject of a cubist painting canbe recognized.

Thus, if as I have argued, the network cannot be formulated with independence required by
a tree structured decomposition, it is likely that local relationships — exclusion, co-incidence,
proximity and orientation — can be exploited that do not require “completely global” influences.

IV. Single verses multiply connected networks

When more than one feature predict one lower level observable, the recognition network
will have nodes with multiple paths. Fortunately the hierarchical method creates networks with
influences only between adjacent levels. This section presents a solution to a simple case of
multiple connections between levels that suggests their may be efficient solution techniques that
apply to hierarchical networks.

A. The Concept of a solution

Both influence diagram and belief network solution methods result in the same solution to a
Bayes network. Solving the network by influence diagram techniques derived from Bayes rule
transforms the network so that a subset of the nodes, the set of hypotheses is conditioned upon the
rest. The initial distribution over the set of hypotheses, known as the prior, is part of the network
specification. In the process of solution, evidentiary nodes are transformed so that they are not
conditioned by other nodes. Solving the network also imputes a distribution over the evidence,
known as the pre-posteriors or marginals. The pre-posteriors — the distribution imputed by prior
beliefs before observations are made - has significance for the solution only as it relates to collection
of information — only indirect significance for the solution. As evidence nodes are instantiated,







